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bstract

Many young biotechnology firms act as intermediaries in tripartite alliance chains. They enter upstream partnerships with public
ector research institutions, and later form commercialization alliances with established, downstream firms. We examine the alliance

ctivity in a large sample of biotechnology firms and find: (i) firms with multiple in-licensing agreements are more likely to attract
evenue-generating alliances with downstream partners; however, (ii) the positive relationship between in-licenses and downstream
lliances attenuates as firms mature, and (iii) the diversity and the quality of the academic connections of firms’ principals influences
heir chances of successfully acquiring commercialization rights to scientific discoveries in universities.

2007 Elsevier B.V. All rights reserved.
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. Introduction

In the growing literature on inter-corporate part-
erships at the nexus of strategic management,
rganizational theory, and organizational economics,
iotechnology has emerged as perhaps the most fre-
uently examined research site. This is unsurprising
iven the seemingly inexhaustible incidence of alliance
ormation in the sector (Hagedoorn, 1993). Studies of
lliances in the biopharmaceuticals industry have gen-
rally pursued one of three broad research objectives.

irst, the industry has hosted a number of studies that

est theories of alliance formation (e.g., Barley et al.,
992; Powell et al., 1996; Walker et al., 1997). Second,
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researchers have explored the deal-specific and com-
petitive conditions that engender governance choices in
alliance agreements, such as the decision to take a partial
ownership stake in a partner (e.g., Pisano, 1989, 1991;
Robinson and Stuart, 2007). Third, a number of studies
have gauged the consequences of collaborative activity
for firm-level performance outcomes, including the rate
of innovation (Shan et al., 1994), growth (Powell et al.,
1996), valuations of early stage companies (Stuart et al.,
1999), and the adaptability of established organizations
(Rothaermel, 2002).

It is well understood that the majority of alliances in
the biotechnology sector are vertical: many collabora-
tions unite the efforts of two organizations that, at least
under the parameters of the alliance contract, engage
in relatively distinct sets of activities along the value

chain in the life sciences. In the types of deals that
have garnered the most attention in the academic lit-
erature, a biotechnology firm conducts research and
development and transfers the output(s) to a pharmaceu-
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gic alliances. However, we also hypothesize – and find
– that the positive relationship between upstream and
downstream alliances attenuates in biotechnology firm

1 Following convention, we will refer to technology sourcing
alliances between biotechnology firms and universities as “upstream”
partnerships, and alliances between biotechnology firms and estab-
lished life sciences companies as “downstream” deals. Thus,
throughout the paper, we will use upstream and downstream to des-
ignate the direction of an alliance relative to a biotechnology firm’s
position in the industry’s value chain. Also, we interchangeably use
the terms “life sciences” and “pharmaceutical” firm to refer to the
478 T.E. Stuart et al. / Resea

tical or life sciences company, which then undertakes
additional development and the marketing of any result-
ing products (see, for example, Pisano, 1989; Reuer et
al., 2002; George et al., 2002; Robinson and Stuart,
2007). In the language of Teece (1986), biotechnology
firms often have expertise in the development of novel
scientific approaches to drug development, while the
complementary assets to advance and ultimately com-
mercialize these technologies reside in pharmaceutical
firms. Although the actual relationship between part-
ners is more iterative and interactive than this simplistic
characterization suggests, biotechnology alliances often
entail a vertical division of labor along a value chain,
rather than horizontal linkages among firms engaged in
similar activities.

Much of the existing literature on strategic alliances
implicitly locates biotechnology firms at the upstream
pole of the pharmaceutical (or agricultural biotech-
nology) industry value chains. In other words,
biotechnology firms are understood to be originators
of technology, which is then eventually brought to
the marketplace by strategic alliance partners with
extensive marketing organizations and experience in
managing the clinical trials process (e.g., Barley et al.,
1992; Rothaermel, 2001; Rothaermel and Deeds, 2004;
Robinson and Stuart, 2007). This is a fair characteri-
zation of many alliances in the industry. However, as a
different body of work on the origins and evolution of
biotechnology firms has illuminated, many biotech firms
maintain close links with universities (see for exam-
ple, Liebeskind et al., 1996; Audretsch and Stephan,
1996; Powell et al., 1996; Zucker et al., 1998; George
et al., 2002; Murray and Stern, in press). Indeed, with
just a handful of exceptions, the drugs on the mar-
ket today with biotechnological origins have emanated
from license agreements for scientific discoveries made
in universities (Edwards et al., 2003). Given the mul-
tiplex relationship between biotechnology firms and
universities, the primary question we address here is:
how do the extensive, formal interactions between these
two types of organizations influence the dynamics of
downstream alliance activity in the industry? We also
explore a secondary question: to what extent is the
propensity to in-source university science a function of
the within-academe networks of the founders and sci-
entific advisors of the biotechnology firms? In other
words, in this paper we treat biotechnology firms as
the unit of analysis and analyze their rates of forma-

tion of upstream-oriented alliances with universities and
downstream-focused transactions with established firms.

We hypothesize that one of the most significant roles
performed by biotechnology companies has been to iden-
icy 36 (2007) 477–498

tify and in-license science created in universities, and
then to further develop and ultimately transfer this intel-
lectual property to larger firms that possess the resources
to commercialize the technology. Thus, although virtu-
ally all biotechnology firms conduct substantial internal
research and most add value to the technologies they
in-license, these organizations often perform the role of
value-added intermediaries in the migration of intellec-
tual property from universities to downstream strategic
partners.1 We draw upon the literature on brokerage and
intermediation in technology development to formulate
predictions about the dynamics of the tripartite alliance
chains that emerge as scientific discoveries progress
from universities to biotechnology firms, and then to the
established firms located further down the value chain.

Although our analysis will be situated in the biotech-
nology sector and we will refer to conditions in the
industry while formulating the predictions, we believe
that the arguments we develop are relevant to other,
science-driven high-technology industries, including
subfields in microelectronics, advanced materials, and
the emerging area of nanotechnology. The more general
value of the analysis in the paper is to explore the corre-
lates of an increasingly prevalent business model: young
technology firms with close ties to research institutions
acting as intermediaries in alliance chains that lead to the
development and commercialization of science-based
discoveries originating in public sector organizations.

The paper contains three primary findings. First,
we show that biotechnology firms with a greater num-
ber of in-license agreements with universities are more
likely to craft revenue-generating alliances with down-
stream partners. This is the core relationship we seek
to confirm: if young biotechnology firms are technol-
ogy brokers, firms with many university deals will
have more to offer to downstream partners in strate-
downstream partners that collaborate with biotech firms. These firms
include, in order of frequency, pharmaceutical companies (e.g., Eli
Lilly), mature biotechnology firms (e.g., Amgen), and agrochemicals
firms (e.g., Dupont, Monsanto). Finally, throughout the paper, we will
use the term “broker” and “intermediary” as synonyms.
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funding for university research, often in exchange for the
right of first refusal to license scientific discoveries. In the
following sections, we develop predictions concerning

2 Close university–industry interactions are not unique to
biotechnology—such connections are present in a variety of indus-
tries today, and have existed in many of the technologically advanced
industries of other times. For example, in a history of the early synthetic
dye industry, Murmann (2003) attributed Germany’s dominance of the
industry to the strength of the country’s academic programs in syn-
thetic organic chemistry, coupled with the dense interactions between
T.E. Stuart et al. / Resea

ge, invested capital, and working capital. We argue
hat changes in biotechnology firms’ strategic scope
ccount for this dwindling effect: as young firms mature,
ccrue financial means, and develop additional capabil-
ties, they become more likely to extensively develop
n-licensed technologies, rather than partner with down-
tream collaborators at an earlier stage of development.
ur final result is from regressions of the determinants
f university–biotechnology firm deals. Here, we show
hat the diversity and quality of the connections of firms’
ounders and advisors within the academic community
nfluence their chances of successfully acquiring the
ights to scientific discoveries in universities.

. University–firm interactions

In the past few decades, universities have become
uch more proactive in their commercialization efforts

e.g., Di Gregorio and Shane, 2003; Nelson, 2004;
ampat, 2006). Indeed, many universities conceive of

heir traditional mission of educating students and
dvancing understanding to have broadened to include
atenting and commercializing research discoveries
Bok, 2003). Using data collected by the Association of
niversity Technology Managers, Thursby and Thursby

2002) reported that the number of patents granted,
nventions disclosed by faculty, and formal licensing
greements executed at U.S.-based research universi-
ies all increased more than 7% per year throughout the
990s. Henderson et al. (1998), Mowery et al. (2001)
nd Sampat (2006) further document trends in univer-
ities’ patenting activities. Some universities have also
pawned startups to commercialize scientific discover-
es. Shane and Stuart (2002), for example, analyzed a
ataset with more than 130 startup companies founded
n full or in part to exploit MIT-owned inventions. While

IT is admittedly an outlier, there has been an across-
he-board increase in universities’ commercialization
fforts.

Specifically in biotechnology, innovation has hinged
n the coordinated efforts of three types of organizations:
niversities, biotechnology firms, and established life
ciences firms (Kenney, 1986; Arora and Gambardella,
990; Liebeskind et al., 1996; Powell et al., 1996; Zucker
t al., 2002; George et al., 2002). While the alliance lit-
rature has been more focused on partnerships between
iotechnology firms and downstream life sciences com-
anies, the extensive connections between universities

nd biotechnology companies have been featured in
he growing literature on university–industry relations.
n one of the more influential papers on the subject,
ucker et al. (1998) argued that the dependence of young
icy 36 (2007) 477–498 479

biotechnology firms on university science ran so deep
that the geographic configuration of the early biotechnol-
ogy industry could be expected to parallel the geographic
locations of star life scientists employed in universities.2

Biotechnology firms maintain broad and deep, formal
and informal relations with universities. We estimate that
half of all biotechnology firms have been founded by uni-
versity scientists, most of whom maintained academic
appointments post-founding.3 The majority of firms
recruit prominent scholars in universities and non-profit
research institutes to serve as compensated scientific
advisors. There are also myriad, non-contractual ties
between private sector firms and public sector research
organizations, such as coauthorships among researchers
that span the public–private divide (e.g., Owen-Smith
and Powell, 2001; Zucker et al., 2002; Gittelman, 2003a;
Stuart and Ding, 2006). The network woven by these
informal relationships is dense, as two recent papers
illustrate. Beginning with a bibliometric dataset of indi-
vidual life scientists in universities, Azoulay et al. (in
press) found that 38% of the members of a random
sample of 3800 U.S.-based, academic life scientists
had, at some point in their careers, coauthored one or
more papers with scientists working in the private-sector.
Starting with a sample of biotechnology firms, Gittelman
and Kogut (2003) found that more than 70% of the
scientific papers published by members of firms were
coauthored with a scientist in academia.

In addition to part-time employment contracts and
informal collaborations that connect individuals in
biotechnology firms and scientists in universities, for-
mal, inter-organizational contractual linkages are also
prevalent. These formal university–firm linkages include
technology licensing deals (exclusive or non-exclusive)
in which rights to use specific discoveries or scientific
materials are acquired by firms, and sponsored research
agreements, in which a for-profit firm provides research
leading university scientists and researchers in nascent companies.
3 Audretsch and Stephan (1996) identified 101 founders of biotech-

nology firms, of which 50 were university-employed scientists. In the
much larger dataset used in this paper, we find approximately the same
percentage of academician-founded companies.
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the relationship between biotechnology firms’ upstream
alliances with universities and their downstream trans-
actions with life sciences firms, and about the attributes
that we anticipate will affect a biotechnology firm’s pro-
clivity to enter into university deals.

3. Intermediaries in tripartite alliance chains

There is a long history of research on the contribu-
tion of brokers – both individuals and organizations – to
the development and commercialization of technology
(see Howells, 2006, for a review). Broadly, broker-
age or intermediary relations are connections between
two actors that are mediated by a third party (Burt,
1976; Galaskiewicz, 1979; Marsden, 1982; Gould and
Fernandez, 1989). The brokerage role is quite varied, and
brokers are known to facilitate transactions in a num-
ber of distinct ways. For instance, brokers can act as
gate keepers, deciding who gets access to the interests
they represent; they can serve as go-betweens, informing
two potential exchange partners of complementarities in
one another’s interests, skills or resources; or technol-
ogy brokers can play a combinatorial role, assisting in
the bringing together of previously disparate pieces of
knowledge to create a novel technological approach (see
e.g., Hagadon and Sutton, 1997; Fleming and Sorenson,
2003; Burt, 2004).

A broker can also serve as a liaison, or an actor that
interconnects two distinct types of actors in a channel
of resource exchanges (Gould and Fernandez, 1989, p.
93). This conception of brokerage is closest to our use
of the term in the context of the biotechnology industry:
to the extent that early stage firms in the industry receive
intellectual property from universities and subsequently
exchange it (often after considerable, additional devel-
opment) with downstream alliance partners, young firms
in the industry perform the role of liaison brokers.4
In our view, many biotechnology firms can be viewed
precisely in these terms: they serve as value-added inter-
mediaries between universities and downstream alliance
partners. Consider, for instance, Millennium Pharmaceu-

4 Our data are macroscopic and we do not observe the specific behav-
iors of the biotechnology firms in any of the myriad transactions in
the dataset we explore. For this reason, we must be somewhat agnos-
tic about the specific functions of biotechnology firms in the alliance
chains we observe. Based on findings in the literature, it is highly
likely that biotechnology firms also often play a combinatorial role and
sometimes serve as gatekeepers. Given that we cannot observe specific
actions, however, we emphasize that young biotechnology firms are
liaisons because they are intermediaries situated between universities
and established firms.
icy 36 (2007) 477–498

ticals, a Boston-based company founded to capitalize
on scientific advances in genomics and bioinformatics.
Like many other young biotech companies, Millen-
nium has cultivated extensive connections within the
academic community. One of the company’s founders
was a genomics expert at the Whitehead Institute for
Biomedical Research (an MIT-based research institute).
Millennium also assembled a scientific advisory board
(SAB) comprising 13 Ph.D. scientists and 10 M.D.s, all
but 1 of whom were researchers at universities (includ-
ing MIT, Harvard, and Princeton) or non-profit research
institutes. Thus, a number of prominent academic scien-
tists maintained affiliations with the company.

Fig. 1, constructed from information in the company’s
1996 IPO prospectus (SEC form S-1A, file number 333-
02490, 06/05/1996), locates Millennium at the hub of
a network of upstream and downstream relationships.
At the time of its IPO, Millennium had established
downstream, product development alliances with three
pharmaceutical firms in five different therapeutic areas
(obesity, oncology, diabetes, heart disease, and respira-
tory ailments). In these alliances, Millennium provided
its partners access to receptors it had identified to serve
as targets for drug development research. In exchange,
Millennium received lump-sum payments, the promise
of contingent payments based on future accomplish-
ments, and, if a product were ever brought to market,
royalties on product sales. Millennium’s downstream
alliances demonstrate the vertical nature of biotechnol-
ogy collaborations: the division of labor specified in
these transactions dictated that the company’s strate-
gic partners would undertake preclinical studies, clinical
development, regulatory approval, and manufacturing
and marketing of any products resulting from tech-
nologies supplied by Millennium. Thus, Millennium
contributed intellectual property, while its partners pro-
vided financial capital and access to the complementary
assets essential for developing the company’s genomics
technologies into marketable products.

Notice as well that Millennium had created a num-
ber of upstream relationships – some casual and some
formal – with universities. In arguing that firms like
Millennium act as brokers, we do not mean to suggest
that the company is merely a passive or thin intermedi-
ary. Indeed, before signing up downstream partners, the

company had made significant investments in advancing
its technology platform, much of which was developed
internally.5 However, it is equally apparent that the com-

5 In the first 3 years after founding, Millennium invested approxi-
mately $75 million in R&D to develop its technology platform.
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Fig. 1. Millennium pharmaceutical alliance profile at IPO (1996). The shaded oval represents Millennium Pharmaceuticals, with boxes corresponding
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any is not the sole developer of the technology it shares
ith downstream collaborators. In Section 5, we for-
ulate predictions concerning the relationships between

pstream and downstream alliance activity at biotech-
ology firms, as well as the influence of founding team
haracteristics on the enactment of a technology broker-
ng strategy. Before doing so, we provide as background
brief overview of the major stages in the drug develop-
ent process. This description of the value chain, or sets

f inter-related tasks that occur in the drug development
rocess, represents the activity system in which industry
articipants make heterogeneous choices about where to
ocus their labor.

. The drug development process

The development of novel pharmaceuticals is a
omplex, multi-year process that often begins with early-
tage, exploratory research, and continues through FDA
eview to the marketing and selling of new medicines.
he process begins with the identification of drug targets,
hich are enzymes, receptors or other proteins that trig-

er or block biochemical processes within a cell. Once
dentified, the biological role of these targets in disease
nitiation or progression is then validated, which entails
stablishing that a DNA, RNA, or protein molecule
public. Solid arrows depict upstream alliances with universities, and
cts were in place at the time the company filed to offer public shares

directly participates in a disease process and is therefore
a suitable target for development of a new therapeutic
compound. Validated targets are then screened against
(typically hundreds of thousands) molecules, with the
aim of pinpointing compounds that trigger or block the
disease processes precipitated by the focal targets.

After a compound has been identified and screened, it
must pass through a number of additional testing stages.
Before it is submitted to the FDA to obtain clearance
for human testing, it goes through extensive animal and
other forms of pre-clinical testing. Clinical trials then
consist of the commonly known three phases. After a
drug finally receives FDA approval, firms often make
additional investments to establish a pharmaceutical’s
efficacy relative to other options. Firms also invest sub-
stantial sums to market the drug to physicians. According
to data from PhRMA, the pharmaceutical industry trade
association, the total time involved from the beginning
of discovery stage research to marketed drug is 10–15
years.

This is a broad-brushed description of the drug devel-
opment process that lacks many of the complexities of

each stage of the process. It does, however, convey the
multi-stage, semi-sequential nature of the development
process. Conceiving of basic research related to the biol-
ogy of disease processes as being at the upstream end of
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the industry’s value chain and the individual consumer as
being at the downstream end, the developmental stages
just described can be construed as the major components
of the industry’s value chain. This industry has been of
great interest to organizational researchers because it is
populated with a diverse array of actors whose fates are
woven together in the fabric of a dense collaborative
structure along the industry’s value chain (Powell et al.,
1996, 2005). Again as a broad generalization, one can
consider pharmaceutical firms as engaging in most steps
of the value chain, but they typically devote a majority of
their investment resources toward financing clinical trials
and the sales and marketing of drugs. Whereas the mass
of the resources allocated by large, established firms is
devoted to downstream activities, upstart biotechnology
firms and universities generally devote their resources to
work on the upstream segments of the value chain. In our
project, we are interested in the alliance federations that
connect the actors focusing their efforts (at least within
the context of a given development project) at different
stages of this value chain. With this overview in mind,
we turn to the conceptual development of the empirical
relationships we explore.

5. Empirical implications

5.1. Alliance chains

Startup firms are now a prevalent organizational
medium for bringing university science to the mar-
ketplace. In principle, one can consider any young
firm that is founded to commercialize academic sci-
ence to be engaged in the role of brokering connections
between the public and private spheres. Prominent exam-
ples include Genentech, Cirrus Logic, and recently,
Google.6 What distinguishes biotechnologies from many
other (but, as we discuss in the conclusion, not all)
university-originated technologies is that, in the typi-
cal case, the process of commercializing biotechnologies

is enormously costly. Whereas a young software com-
pany might raise sufficient capital to directly market
its products to end consumers, early stage biotech-
nology firms almost uniformly depend on downstream

6 These three companies licensed university discoveries, and their
formation involved significant participation from university faculty.
Stanford and Berkeley jointly held the (now-expired) recombinant
DNA patent licensed by Genentech, and co-founder Herbert Boyer
was a member of the UC faculty; Cirrus Logic grew out of research
at MIT and was founded by Suhas Patil, an MIT faculty member; and
Stanford holds the patent on the method for ranking web pages that is
licensed to Google.
icy 36 (2007) 477–498

alliance partners to perform many of the activities in the
product development process. The substantial financial
and capability-based requirements for commercializ-
ing biomedical technologies necessitate that early stage
companies turn to established, resource-rich organiza-
tions to participate in technology commercialization.
This factor is paramount in giving rise to the alliance
chains we analyze.

A primary benefit of formal alliances with universi-
ties is that these deals often transfer rights to research
discoveries to participating companies. Because univer-
sity deals potentially increase their stocks of intellectual
property, biotechnology firms with many in-licensing
and joint research agreements with universities should
have more technology to convey to downstream alliance
partners. Insofar as biotechnology firms behave as liaison
brokers, an increase in the volume of upstream transac-
tions should positively influence the capacity of these
firms to execute downstream partnerships.

In addition, accumulating (if not yet conclusive) evi-
dence suggests that firms which build on basic science
enjoy both more productive research and development
operations and create more important technologies. In
their examination of a large sample of patents across a
spectrum of technologies, Fleming and Sorenson (2003)
argue that scientific understanding can be construed as
a “map” that guides technological search toward fruitful
areas or exploration. Specifically with regard to the drug
discovery process, Henderson and Cockburn (1994) find
that firms which had adopted “science-driven” research
and development efforts enjoyed improved productivity.
These findings about the volume and quality of techno-
logical outputs imply that firms with formal scientific
access agreements with universities may have more and
better intellectual property to broker to downstream part-
ners. We therefore expect,

Hypothesis 1. The more upstream agreements a
biotechnology firm has with universities, the more down-
stream alliances it will enter with mature life sciences
companies.

Obviously, we do not expect the first prediction to run
counter to intuition. To be clear, however, Hypothesis
1 is not tautological—neither are downstream alliances
necessarily the form of commercialization strategy pur-
sued by a particular company, nor is it a truism that
in-licensed technology will augment firms’ ability to

attract downstream partners. We believe, moreover, that
the relationship between the rates of upstream and down-
stream partnerships will vary over biotechnology firms’
lifecycle, and thus that measures of firms’ development
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tage will moderate the relationship set forth in the first
rediction.

The strategy literature has documented many of the
otential advantages gained from collaborative activity
e.g., Kogut, 1988; Hagedoorn, 1993; Gulati, 1998), but
s many have observed, the opportunity costs associated
ith downstream partnerships are also non-negligible.
hen a biotechnology firm (or any other company)

nters an alliance with a downstream partner, it will cede
ome proportion – very often, the majority – of the rents
o the strategic partner. In fact, in the typical case, the bio-
echnology firms’ downstream partners retain most of the
rofits generated by any future sales of a product emerg-
ng from an alliance. There is evidence that this cost is
articularly high for firms in weak negotiating positions:
nancially strapped biotechnology firms, because they

ack bargaining power, often must enter alliances under
ess attractive terms (Lerner and Merges, 1998).

Because of the many opportunity costs of alliances, a
umber of biotech firms have pursued a strategy whereby
hey begin brokering technology, but ultimately perform
n house more of the value chain functions, thus lessen-
ng their reliance on downstream partners. Returning to
he description of the industry’s value chain in Section
, although just a handful of biotechnology companies
ave become fully integrated across all stages of the drug
evelopment process (e.g., Amgen, Genentech, Gen-
yme, Biogen Idec), many have migrated part of the
ay down the value chain by investing the surpluses

rom past alliances and external financing rounds in the
evelopment of a broader suite of capabilities. In turn,
s biotechnology firms extend their internal scope to
ncorporate more downstream functions, they become
ess dependent on downstream alliance partners at the
arly stages of the drug development process. If this is
n accurate characterization of the strategic evolution of
number of firms in the industry, we should observe that,

ypothesis 2. The magnitude of the positive relation-
hip between the incidences of upstream partnerships

ith universities and downstream alliances with estab-

ished firms will attenuate as biotechnology companies
ature.7

7 For this hypothesis to be supported, it is not necessary that biotech
rms forward integrate to encompass all commercialization functions.
ne way to imagine the drug development process is as a pyramid.

n the early stages of development, researchers often consider a vast
rray of molecules as potential drug development candidates. At each
uccessive stage of the development process, many of the potential
andidates are eliminated. Biotechnology firms that are able to take a
olecule down the development pipeline, e.g., to the point at which
icy 36 (2007) 477–498 483

Put differently, we anticipate that the business model
of brokering university technology will be most preva-
lent among young companies, or equivalently, older
firms with a broader set of capabilities will be less likely
to quickly form downstream partnerships for in-licensed
discoveries, choosing instead to directly exploit their
technological assets to a greater extent.

5.2. Sourcing upstream deals

Having discussed the interdependence of upstream
and downstream alliances, we briefly consider the
question of the determinants of in-license agreements
between biotechnology firms and universities. Here, our
arguments lie at the intersection of an emerging litera-
ture on the social networks of entrepreneurs as important
determinants of resource mobilization (e.g., Brittain and
Freeman, 1986; Shane and Stuart, 2002; Maurer and
Ebers, 2006), and the more general literature describ-
ing how social networks facilitate access to resources
(Granovetter, 1973; Burt, 1992). We assert that the depth
and the breadth of the networks of academic scien-
tists affiliated with young technology firms influence
companies’ ability to identify and negotiate access to
promising university science. Just as the advantage of a
broker lies in the reach of the actor’s ties in the com-
munity in which he or she intermediates transactions,
we anticipate that affiliated scientists that are well posi-
tioned in academic circles will be most likely to aid
their firms in the process of acquiring rights to university
science.

Particularly because universities have become active
in promoting technology transfer, however, it is rea-
sonable to question whether connections within the
academic community are a prerequisite for identifying
promising university technologies? For there to be merit
to the argument that affiliated scientists with rich net-
works are instrumental in formal contracting between
biotechnology firms and universities, some factor(s)
must preclude interested parties that lack networks in
academia from gaining equal access to university sci-

ence. In fact, if the general argument is correct that
biotechnology firms are sometimes created to capitalize
on brokering technology between universities and down-
stream partners, it must be that these upstart firms possess

a lead molecule has been validated and animal tested, are likely to
engage in less frequent, but larger transactions. This is because both
time and development costs, as well as the value, of a potential molecule
increases as the drug candidate successfully passes each of the many
hurdles in the development process.
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an advantage relative to incumbent firms in creating these
linkages in the value chain.8

What might such limiting conditions be? We see
at least three possibilities. First, an immense amount
of research is performed across many universities and
research institutes. Consider, for instance, that in recent
years the University of California system (including all
nine campuses) has, among all organizations, garnered
the greatest number of patents in the life sciences. In any
given year, there are hundreds of discoveries available for
license from the UC system alone. Thus, the large vol-
ume of research in this sector creates high search costs for
would-be licensors. The difficulty of identifying promis-
ing university science may create an opportunity for the
formation of brokers to screen and market discoveries
emanating from universities.

Second, because many licenses are secured on an
exclusive basis, it is often necessary to negotiate access to
the most promising scientific research when the research
is at an early stage of development, before information
about the value of a discovery has disseminated widely.
Holding exclusive licenses to university technology is
one of the potential sources of competitive advantage
of young science-based firms (Rothaermel and Thursby,
2005). Without a connection to the scientists involved in
a discovery, interested parties may be too late to obtain
direct access from the university. Thus, knowledge of
high potential scientific work at the time when it is still
in a university lab may be an important determinant
of the ability of companies to capitalize on university
science.

Third, due to the tacit nature of many state-of-the-
art scientific discoveries, participation of the scientist(s)
who made a research discovery is often necessary to
extract its full value. We think friends and fellow aca-

demics are more likely to succeed at enlisting the advice
and participation of university inventors in helping pri-
vate firms advance the technology they have in-licensed.

8 It is important to clarify that we do not claim that biotechnology
firms (and startups more generally) are alone among private-sector
companies in possessing formal and informal relationships with univer-
sities. The research staffs at pharmaceutical firms, for instance, also are
known to associate with university faculty. Cockburn and Henderson
(1998) described coauthorships between researchers in pharmaceuti-
cal firms, and Gittelman (2003b) found that in France, it is common
for established companies (rather than startups) to work directly with
university scientists. We merely claim that, in the U.S., members of
the research staff at biotechnology firms are likely to be more densely
embedded in the academic community than their counterparts at large,
established pharmaceutical, chemical, and life sciences companies.
This assertion is well supported in the literature, and later we too report
supportive evidence.
icy 36 (2007) 477–498

Moreover, in many cases licensable university science
pertains to basic discoveries. Insofar as additional devel-
opment is necessary in an area of scientific specialization
that is not well honed in established firms, it is often nec-
essary that a party with the relevant expertise advance
the discovery to a more developed state. Thus, because
they tend to develop expertise in specific areas of basic
scientific research, biotechnology firms are often bet-
ter equipped to further the advancement of in-licensed
technology.

For these reasons, we anticipate that thick networks
in the academic community will facilitate the process
of searching for and assimilating university-developed
scientific discoveries. Thus, we predict,

Hypothesis 3. Biotechnology firms with founders and
scientific advisors that are well networked in the aca-
demic community will be more likely to enter formal
technology-access agreements with universities.

6. Empirical analysis

We have collected information from a number of
sources to build a panel dataset that contains firm-year
observations on all publicly traded biotechnology com-
panies in the U.S. The dataset includes firms’ full alliance
histories and financials since the year of their birth, as
well as detailed information on the academic scientists
affiliated with the companies.

6.1. Data sources

We began by assembling a list of all biotechnol-
ogy firms. To create a census of firms, we consulted
a number of rosters of industry participants, including
Compustat, Bioscan, Informagen, Recombinant Capital,
and CorpTech. Next, matching names in this historical
census to firms in the Center for Research in Securities
Prices (CRSP) database, we identified all biotechnology
firms that have issued shares of stock on the U.S. pub-
lic markets. In this study, we have limited the analysis
to publicly traded firms for two reasons: we were only
able to acquire information on founders’ backgrounds
for public firms, and data on alliance activity is most
complete for them as well.

We received information on alliances from Recom-
binant Capital, a biotechnology industry consulting
firm and information vendor. The Recombinant Capi-

tal Alliance Database contains descriptions of more than
15,000 deals, including agreements between firms and
universities. Recombinant Capital scours SEC filings,
press releases, industry conferences, and other sources
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o identify alliances. Proxy statements are a particularly
ruitful source of information about deals because syn-
pses of terms must be reported in filings if a transaction
s judged to be “material” to a company’s current or
uture operations. Because of this disclosure require-
ent, alliance histories are probably most complete for

ublic biotechnology firms.
We analyze a total of 429 U.S.-headquartered biotech-

ology firms that have issued shares to the public
etween 1972 and 2002, when we concluded our data
ollection. We retrieved SEC filings for each of these
ompanies.9 According to Recombinant Capital, these
rms had established a total of 1330 upstream alliances
ith universities, and a total of 4139 downstream

lliances with commercialization partners. The unbal-
nced panel contains an average of 10.6 observations
er firm. Although data availability issues required us to
imit the analysis to firms that had filed an IPO prospectus
t some point in their lifespans, we were able to collect
lliance data and other covariates for all firms in the
ample from their birth years. Thus, we have complete
i.e., non-left-censored) alliance event histories for all
he firms in the sample we analyze.

From the IPO prospectuses, we coded financial infor-
ation for firms in the years prior to going public, as
ell as biographical sketches of company founders and
embers of scientific advisory boards.10 After compil-

ng a list of the 1116 Ph.D.-holding academic scientists
ho were formally affiliated with the firms in our dataset

for ease of exposition, we will refer to the academic
ounders and SAB members of the companies in our
ataset as “affiliated scientists”), we then queried the
SI’s Web of Science database to collect complete pub-

ication histories for each of these individuals. We used
he set of scientific papers written by these individuals to
onstruct measures of the company-affiliated scientists’

9 For companies that filed papers to go public after 1995, IPO
rospectuses are conveniently available in the SEC’s EDGAR database
http://www.sec.gov/edgar.shtml). We acquired the remaining S-1
orms by traveling to the SEC’s main office in Washington, DC, where
istorical findings can be photocopied. Not every S-1 document pro-
ided detailed information about founders and advisors; we were only
ble to obtain this information for approximately 70% of the compa-
ies. The gaps are concentrated in the early period of the industry,
hen disclosure requirement for securities offerings appear to have
een less extensive.

10 Almost all young biotechnology firms assemble boards of com-
ensated scientific advisors. Board members are often prominent
cademics who are experts in the scientific fields in which the firm
s doing research. In addition to providing guidance on scientific mat-
ers, board members lend credibility to young companies (Higgins and
ulati, 2003).
icy 36 (2007) 477–498 485

networks in academia, as well as their prominence in the
scientific community.

6.2. Covariates

6.2.1. Alliances
All firms in the dataset enter in the year of their

incorporation, and we conclude the analysis at the end
of 2002. Thus, the dataset is an unbalanced panel with
observations on firm-years. After cleaning the data to
remove alliances arising for non-strategic reasons (e.g.,
as settlements to litigation or asset sales caused by finan-
cial distress), we constructed current-year and multiple
lags of alliance counts, distinguished by agreement and
partner type, for each firm-year. The covariate of cen-
tral interest is a count of the “total number of upstream
partnerships” (i.e., deals between biotech firms and uni-
versities) for biotech firm i in years t − 1, t − 2, t − 3, or
the 3-year window, [t − 1 to t − 3]. A second alliance
count, which serves as the dependent variable in the
tests of hypotheses 1 and 2, is the “total number of
downstream partnerships” (i.e., vertical alliances with
established firms) created by biotechnology firm(it).11

Hypotheses 1 and 2 are examined by documenting
the relationship between lagged values of the upstream
alliance count and the current-period value of the down-
stream alliance count, and then allowing the relationship
to vary with the maturation of the biotechnology firm.

6.2.2. Affiliated scientists’ networks
To examine Hypothesis 3, we constructed three mea-

sures of the networks of the scientists affiliated with
the biotech companies in our data. First, for each com-

pany in the dataset, we include a count of the number
of academic founders, which we define to be scientists
that were research faculty at universities or non-profit
research institutes at the time their company was incor-

11 In one-fourth of the downstream collaborations in the dataset, both
partners are biotechnology firms. We include these alliances in the data
we analyze. Typically, these agreements are established between young
and small biotechnology firms and relatively more senior partners.
Like deals between biotechnology firms and life science companies,
biotech–biotech collaborations routinely entail a vertical division of
labor. For instance, in early 2003, the recently public firm Tularik
(IPO in 2000) entered into a strategic alliance with Amgen, the biotech
firm with the highest market capitalization at the time of this writing.
Under the terms of the contract, Tularik is to provide Amgen with
drug targets in the area of oncology. The partners will co-develop any
drugs resulting from the targets, while Amgen will perform all clinical
development and possess worldwide commercialization rights. In the
dataset, we would increment Tularik’s downstream alliance count for
this transaction, but Amgen’s downstream alliance count would remain
unchanged.

http://www.sec.gov/edgar.shtml
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porated. Second, we collected the 129,825 papers written
by the 1116 scientists that were affiliated with the firms
in our dataset, which we used to compute year-specific
counts of the number of unique coauthors accrued by
each of the affiliated academic scientists. Following a lit-
erature on the information advantages of network reach
(Bonacich, 1987), we assume that scientists with high
degree scores (counts of relations) in the coauthorship
network were most able to gain awareness of potentially
commercializable science in universities.

As a third proxy, we computed paper citation counts
– the conventional measure of academic prestige – for
each academic scientist affiliated with the firms in our
dataset. Our assumption in including this measure is that
scientists known for their scholarly achievements will,
through frequent participation in scientific gatherings
and other opportunities that accompany academic promi-
nence, be well networked in scientific circles. From
the Web of Science database, we collected the cumu-
lative citation counts for each article written by founders
or SAB members at the time we downloaded the data
(2002). However, the 2002 citation count of a scientist
affiliated with a firm founded in the late 1970s could be
misleading; a preferable measure would be the cumu-
lative citation counts for an affiliated scientist at the
time he or she started or began advising a firm. While it
would be very time consuming to produce exact citation
counts, we can closely approximate them by distribut-
ing each paper’s total (2002) citations back through time.
We did so assuming that citations arrived according to
an exponential distribution with hazard rate (i.e., inverse
mean) equal to 0.1.12 Backward distributing 2002 cita-
tion totals yields annually updated citation counts for
each article, from which it is straightforward to compute
the total number of citations received by each firms’ aca-
demic affiliates at the time of firm founding. We examine
Hypothesis 3 by relating each company’s affiliated sci-
entists’ coauthorship and citation counts to its upstream
alliance formation rate.
6.2.3. Top 10 university
Much of the public dialogue and scholarly work on

university–industry relations has emphasized the cen-
tral role played by a few prominent institutions, such

12 The bibliometric literature suggests that citations accumulate
according to an exponential distribution (Redner, 1998), and this is
true of the typical paper in our database. We identified the specific
parameter, 0.1, by manually coding 50 randomly selected papers in
each of 3 publication years: 1970, 1980, and 1990, and then choosing
the parameter that yielded the best fit to the actual time path of citations
to these randomly chosen papers.
icy 36 (2007) 477–498

as Stanford and MIT, in generating university-based
entrepreneurship. To assess the extent to which the phe-
nomena we study are general or merely result from the
partnering strategies of spin-off companies from a small
number of elite universities, we create a “Top 10 Univer-
sity” dummy variable. This covariate is defined to be one
if a focal firm’s first university alliance was inked with 1
of the 10 universities who were most actively involved in
alliances with biotechnology companies (these 10 insti-
tutions are identified in Table 1 below). We coded this
variable based on the identity of each firm’s first uni-
versity partner rather than the employers of its affiliated
faculty because most firms were connected to faculty
from multiple universities.

6.2.4. Size controls
To obtain clean estimates of the effect of upstream

alliances, it is important that we carefully account for
the size of the firm in the regressions predicting down-
stream alliance formation. Larger firms presumably have
more technology to entice downstream partners, and if
the incidence of upstream alliances with universities is
correlated with biotechnology firm size, then the results
could be misleading if we do not condition on firm size.
We therefore included three, time-changing measures of
firm size in the regressions. First, we included the log of
annual sales revenues of each firm. Second and third, we
incorporated two variables to account for the technolog-
ical size of the firm: annual R&D expenditures, and the
stock of patents assigned to the firm up to a given year.

6.2.5. Other controls
All models contain a set of year dummies to account

for time-varying factors, such as the availability of
financing for biotechnology firms, which may affect the
outcomes we examine. Lastly, we included the age of
the firm. The age variable is interacted with the upstream
alliance count to test Hypothesis 2.

6.3. Estimators

We estimate a set of count models to test the three
hypotheses. The dependent variable in the first set of
regressions is a count of the number of commercial-
ization alliances biotechnology firm i has created with

downstream partners in year t. We use a fixed effect
specification to remove the influence of time invariant
strategic heterogeneity among firms that may affect the
outcome variable.13 Thus, we present conditional fixed

13 There is a reasonably broad mix of firms in our sample, so we expect
some heterogeneity in firms’ alliance strategies. While the majority of
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Table 1
Biotechnology firms and universities with the highest alliance counts

Firm name Number of alliances
with universities

University name Number of alliances
with biotech firms

Centocor 25 MIT 65
ImClone Systems 24 Stanford 61
Genetic Therapy 19 University of Texas 50
MedImmune 18 Johns Hopkins 46
Myriad Genetics 17 Harvard 39
Targeted Genetics 17 Mass General Hospital 36
Sugen 15 UC San Francisco 35
Affymetrix 13 Duke University 29
Xoma 13 University of North Carolina 25
A
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number tied at 12 (e.g., Alexion and Sequenom) 12

he table lists the 10+ biotech firms with the greatest number of alli
umber of alliances with biotech firms (column 3) prior to 2002.

ffects negative binomial regressions (Hausman et al.,
984) of the rate of downstream alliance formation.
ypothesis 1 anticipates that firms that have a greater
umber of university deals will be more likely to enter
ownstream alliances. Hypothesis 2 proposes that the
ositive association between upstream and downstream
lliances will temper as biotechnology firms mature.
e examine this prediction by interacting the upstream

lliance count with three covariates that capture different
imensions of biotechnology firm maturation: the age of
he biotechnology firm; the amount of working capital
vailable to the firm; and the total invested capital in
he firm. We expect negative coefficients on each of the
nteraction effects.

The final set of regressions address the determinants
f biotechnology firms’ upstream alliances with univer-
ities. The dependent variable in these models is the
nnual count of university alliances established by firm
in year t. Our goal in these regressions is to determine
hether affiliated scientists’ network characteristics at

he time of founding affect the subsequent alliance

trategies of biotechnology firms. Obtaining estimates
n these initial conditions precludes the inclusion of
rm-specific effects (because the covariates of primary

he firms in the sample can be broadly classified as human therapeutics
ompanies, the sample contains genomics, proteomics, combinatorial
hemistry, gene therapy, and many other types of firms. It is highly
ikely that these differences in objective will lead to heterogeneities
n alliance propensities. The conditional fixed effects estimator allays
oncerns about time-invariant sources of heterogeneity. For instance,
he conditioning will subsume non-time-varying differences in found-
ng conditions, such as whether or not firms were founded by one or

ore university professors. In addition, although early stage biotech-
ology firms do often switch therapeutic foci as they evolve, the fixed
ffects will partially account for inter-firm variation in the focus on
pecific disease categories.
UC San Diego 24

ith universities (column 1) and 10 universities that have the highest

interest to us do not vary within firm). To test Hypothesis
3, we therefore report random effects negative binomial
estimates.

7. Findings

Before presenting the multivariate results, we
describe some of the patterns in the data. Table 1 presents
the 10 biotechnology firms and the 10 universities in
our dataset that participated in the greatest number of
university–biotechnology firm transactions. Among all
universities, MIT and Stanford have been the most active
in entering contractual agreements with biotechnology
companies. As has been documented in the case of aca-
demic patenting, it appears that prominent universities
are disproportionately involved in licensing. However,
of the 2342 upstream alliances in our data, the Top 10
universities reported in Table 1 represent a mere 17.5%
of the total transaction volume. Thus, members of a rela-
tively diverse group of universities are actively engaged
with biotechnology firms.

Fig. 2 shows, for the full sample, the average num-
ber of upstream and downstream alliances biotechnology
firms have entered at each year of firm age. In addi-
tion, for the upstream alliance propensity, we break out
the data by founders’ status: we separately report the
curve for biotechnology firms with one or more univer-
sity faculty members as founders and those without any
academic founder. As the figure shows, faculty-founded
firms are slightly more likely to have a formal university
alliance in the early years of their existence, but the dif-

ference is not large. Fig. 2 also demonstrates that both the
upstream and downstream alliance counts reach peaks
prior to the sixth year of a firm’s life, and then slowly
taper as biotechnology firms mature. Thus, as suggested
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Table 2
Number and density of alliances among universities, biotechnology firms, and pharmaceutical firms

Biotech Pharma University

(a) Alliances, all years: 1986–2002
Biotech 4361/0.347 5958/0.475 2234/0.178
Pharma 5958/0.870 777/0.113 108/0.016
University 2234/0.952 108/0.046 N/A

(b) Alliances, early years: 1986–1993, inclusive
Biotech 429/0.159 1553/0.574 722/0.267
Pharma 1593/0.918 131/0.077 7/0.004
University 722/0.989 7/0.010 N/A

(c) Alliances, recent years: 1994–1996/2003, inclusive
Biotech 3932/0.397 4406/0.449 1512/0.154
Pharma 4406/0.855 646/0.125 101/0.020
University 1512/0.935 101/0.062 N/A

(a–c) The number and proportion of alliances between actors in category on row with members of category on column. For instance, in the period
ere wi
DuPon
each ro
1986–1993, 1553 (57.4%) of the 2704 biotechnology firm alliances w
some non-drug-related companies with a life sciences presence, such as
in row sums—the total number of transactions involving the actors on

by Hypothesis 2, the sample averages do indeed sug-
gest the possibility that there are changes in alliance
propensities as firms mature.

Table 2(a–c) are simple density tables illustrating
the collaborative structure of the life sciences industry.
To construct the tables, we report the count and pro-
portion of alliances within and across three types of

actors: universities, biotechnology firms, and established
pharmaceutical and life sciences companies. Table 2a
aggregates the alliances across all time periods; Table 2b
and c report the same information but for an early and

Fig. 2. Biotechnology firms’ average number of upstream and down-
stream alliances formed by year of age and founder status. Plots
the average number of upstream and downstream alliances formed
by biotechnology firms at a given age. Average number of upstream
alliances at a given age is presented separately for firms with and with-
out academic founders. Each data point in the figure is calculated by
dividing total number of alliances executed at a given age by number
of biotechnology firms of that age.
th pharmaceutical companies. (The “Pharma” category also includes
t.) Counts are symmetric but proportions are not because of differences
w.

late period in the evolution of the industry. In making
these table, we used all alliances in the Recombinant
Capital database (i.e., we do not limit alliance activity
to the deals involving the 429 firms in the database we
analyze in the regressions).

The patterns in Table 2 are instructive about the roles
of the different categories of actors we analyze. The cells
in Table 2a indicate the number and proportion of trans-
actions that the organizations in the category on the row
completed with the type of actor on the columns. Thus,
for example, across all years of the Recombinant Capital
dataset, there were 4361 biotechnology–biotechnology
collaborations; 5958 alliances between biotechs and
established life sciences/pharmaceutical companies; and
2234 formal partnerships between biotechnology firms
and universities.

We take a few points from these tables. First,
consistent with our portrayal of young biotechnology
firms as playing the role of brokers, the level of
biotechnology–university engagement greatly exceeds
the level of pharmaceutical company–university

transactions.14 In the full alliance dataset, there were
a total of 108 university–pharmaceutical deals, versus
2234 university–biotechnology agreements. Across all

14 The one caveat to this claim is the possibility that there are
more missing observations among university–pharmaceutical firm
agreements than for university–biotech deals. Although Recombinant
Capital attempts to gather the population of all university–company
transactions broadly related to the drug and biotechnology sectors,
university transactions with large firms may be publicly disclosed less
often than are agreements with smaller companies.
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ears, only 1.6% of the pharmaceutical firm alliance
ctivity is with universities. We take this as prima facie
vidence that biotechnology firms have had some kind
f comparative advantage with respect to in-sourcing
echnology from universities.

Second, we can also observe an evolution of the
ole of biotechnology firms in the collaborative struc-
ure of the field. In the pre-1994 time period (2b),
iotechnology firm–biotechnology firm partnerships,
r agreements that often entail a vertical division of
abor between the two partners, were relatively uncom-

on; just 16% of the overall transactions. In the last
ecade of the data (2c), this proportion changed dra-
atically: biotechnology–biotechnology alliances have

ecome typical. They represented 40% of all alliance
ransactions, and they were almost as frequent as
iotechnology–pharmaceutical firm partnerships. We
onsider this trend to be the aggregate-level manifes-
ation of the maturation of many of the firms in the
ndustry. As some of the industry’s early entrants have
eveloped, they have extended their vertical scope to
ncorporate additional downstream capabilities. In turn,
heir migration down the value chain has enabled some
f the more mature biotechnology firms to participate on
he downstream side of the alliance chains in the indus-
ry: mature biotechnology firms are frequently on the
eceiving end of technology in-sourced from their startup
ounterparts.
Table 3 characterizes the upstream alliances in the
ata by transaction type, partner type, and deal size. We
rouped upstream alliances into four categories: license
nly, license and collaborative research and/or develop-

able 3
niversity alliances by deal type and partner status

lliance type Is alliance funded

No Yes

a) With biotech firms
Licensing only 780 196
Licensing and R&D 425 202
R&D only 404 131
Other 80 17

Total 1689 546

b) With pharmaceutical firms
Licensing only 20 2
Licensing and R&D 31 10
R&D only 27 5
Other 8 4

Total 86 21

how upstream alliance activity broken down by deal type and whether or n
ize data is in million dollar for funded alliances only (the median size of all
icy 36 (2007) 477–498 489

ment, R&D only, and other. Consistent with the most
basic claim of the paper, there is clearly a heavy technol-
ogy access component to the upstream alliances: among
the university–biotech firm transactions, 72% contain a
license provision and the vast majority of the remaining
transactions are either collaborative or sponsored R&D.
In addition, university–biotech transactions appear to be
relatively homogenous in size; 76% of the agreements
involve some form of license fee but no other exchange
of resources, and of the 24% of deals that have a fund-
ing component, the dollar amounts tend to be relatively
small. Among funded alliances, the median deal size is
$400,000.

Table 4 provides summary statistics for variables in
our models, along with a correlation matrix. Table 5
reports the results from the fixed effects negative bino-
mial regressions of the incidence of downstream alliance
formation. In Model 1, there are two statistically sig-
nificant control variables: the lags of logged annual
R&D spending and firm revenues. Net of the conditional
fixed effects, firms that increase R&D spending were
more likely to subsequently enter downstream alliances.
This association may occur because high R&D spending
expands the intellectual property portfolio of the firm,
thus yielding additional technologies to exchange with
downstream partners. After accounting for the level of
R&D spending, an increase in lagged revenue decreased
a firm’s propensity to establish downstream alliances.

One possible explanation for the negative effect of
revenues conditional on R&D is that firms with high rev-
enues relative to their R&D investment are less in need of
the assistance of downstream partners to commercialize

Median size of funded alliances

Total

976 0.155
627 0.775
535 0.2

97 4

2235 0.4

22 NA
41 9.35
32 25
12 101

107 20

ot the transaction involved funding net of royalty payments. Median
alliances is zero).
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Table 4
Descriptive statistics and correlation matrix for regressions of upstream and downstream alliance counts

Mean S.D. Min Max [1] [2] [3] [4] [5] [6] [7] [8]

[1] Num. of downstream alliances 0.839 1.422 0 13 1
[2] Num. of upstream alliances with univ (t − 1) 0.215 0.641 0 8 0.197 1
[3] Num. of upstream alliances with univ (t − 2) 0.223 0.667 0 8 0.125 0.311 1
[4] Num. of upstream alliances with univ (t − 3) 0.222 0.639 0 7 0.123 0.266 0.315 1
[5] Num. of upstream alliances with univ (3 year window) 0.661 1.420 0 13 0.203 0.717 0.752 0.718 1
[6] Age 11.101 5.158 2 34 −0.087 −0.114 −0.123 −0.099 −0.154 1
[7] Age2 149.823 142.850 4 1156 −0.083 −0.094 −0.106 −0.088 −0.132 0.961 1
[8] ln(R&D expenses in million dollars) (t − 1) 1.914 1.130 0 6.78 0.258 0.085 0.105 0.122 0.142 0.178 0.162 1
[9] ln(revenues in million dollars) (t − 1) 1.843 1.591 0 8.20 0.097 −0.035 −0.034 −0.036 −0.048 0.440 0.436 0.480

[10] Working capital (in million dollars) (t − 1) 36.439 102.474 −87.8 2075 0.072 0.038 0.030 −0.002 0.030 0.180 0.191 0.495
[11] ln(cumulative invested capital in million dollars) (t − 1) 4.019 1.876 −3.77 10.03 0.119 −0.004 0.010 0.030 0.016 0.513 0.473 0.705
[12] Num. of patent applications (t − 1) 17.378 48.774 0 703 0.080 −0.008 −0.010 −0.028 −0.021 0.300 0.335 0.321
[13] First university alliance partner is in Top 10 0.157 0.364 0 1 0.047 0.059 0.070 0.104 0.106 −0.065 −0.082 0.121
[14] Num. of firm founders 1.831 1.272 0 7 0.046 0.004 0.015 0.012 0.014 −0.061 −0.066 0.185
[15] Num. of academic founders 0.446 0.897 0 4 0.092 0.049 0.068 0.090 0.095 −0.125 −0.131 0.227
[16] Prestige of (average citation count) of affiliated scientists (in 100) 27.877 38.592 0 273.59 0.219 0.099 0.098 0.109 0.139 −0.090 −0.114 0.377
[17] Sum of coauthorship count of affiliated scientists (in 100) 3.924 5.562 0 58.5 0.174 0.077 0.080 0.089 0.113 −0.114 −0.128 0.369

Mean S.D. Min Max [9] [10] [11] [12] [13] [14] [15] [16]

[1] Num. of downstream alliances 0.839 1.422 0 13
[2] Num. of upstream alliances with univ (t − 1) 0.215 0.641 0 8
[3] Num. of upstream alliances with univ (t − 2) 0.223 0.667 0 8
[4] Num. of upstream alliances with univ (t − 3) 0.222 0.639 0 7
[5] Num. of upstream alliances with univ (3 year Window) 0.661 1.420 0 13
[6] Age 11.101 5.158 2 34
[7] Age2 149.823 142.850 4 1156
[8] ln(R&D expenses in million dollars) (t − 1) 1.914 1.130 0 6.78
[9] ln(revenues in million dollars) (t − 1) 1.843 1.591 0 8.20 1

[10] Working capital (in million dollars) (t − 1) 36.439 102.474 −87.8 2075 0.437 1
[11] ln(cumulative invested capital in million dollars) (t − 1) 4.019 1.876 −3.77 10.03 0.670 0.453 1
[12] Num. of patent applications (t − 1) 17.378 48.774 0 703 0.358 0.400 0.376 1
[13] First university alliance partner is in Top 10 0.157 0.364 0 1 −0.013 0.018 0.075 0.001 1
[14] Num. of firm founders 1.831 1.272 0 7 0.062 0.086 0.105 −0.008 0.097 1
[15] Num. of academic founders 0.446 0.897 0 4 0.013 0.122 0.068 0.001 0.217 0.465 1
[16] Prestige of (average citation count) of affiliated scientists (in 100) 27.877 38.592 0 273.59 0.093 0.243 0.200 0.069 0.157 0.215 0.344 1
[17] Sum of coauthorship count of affiliated scientists (in 100) 3.924 5.562 0 58.5 0.092 0.265 0.176 0.034 0.144 0.282 0.487 0.669
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Table 5
Fixed effects negative binomial regressions of rate of downstream alliances

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Downstream alliances (t − 1) 0.047** [0.013]
Age −0.009 [0.025] −0.009 [0.025] 0.021 [0.028] −0.134** [0.034] −0.147** [0.036] −0.002 [0.034] −0.018 [0.039] −0.010 [0.025]
Age2 −0.001 [0.001] −0.001 [0.001] −0.002** [0.001] 0.002* [0.001] 0.002** [0.0007] −0.001 [0.001] −0.001 [0.001] −0.001 [0.001]
log of R&D expenses (t − 1) 0.274** [0.038] 0.272** [0.038] 0.255** [0.039] 0.227** [0.045] 0.183** [0.05] 0.279** [0.053] 0.267** [0.056] 0.267** [0.038]
log of revenues (t − 1) −0.082** [0.029] −0.083** [0.029] −0.076** [0.029] −0.073* [0.034] −0.085** [0.035] −0.081+ [0.043] −0.067 [0.0401] −0.099** [0.030]
Num. of patent applications (t − 1) −0.001 [0.001] −0.001 [0.001] −0.0004 [0.001] 0.001* [0.001] −0.001 [0.001] −0.002+ [0.001] 0.001 [0.001] −0.001 [0.001]
Num. of upstream alliances with univ (t − 1) 0.095** [0.025]
Num. of upstream alliances with univ (t − 2) 0.045† [0.026]
Num. of upstream alliances with univ (t − 3) 0.054* [0.027]
Num. of upstream alliances with univ (3 year

window)
0.064** [0.014] 0.195** [0.052] 0.051* [0.021] 0.112** [0.042] 0.071* [0.024] 0.057* [0.019] 0.052** [0.015]

Num. of upstream alliances (3 year
window) × age

−0.025** [0.009]

Num. of upstream alliances (3 year
window) × age2

0.001** [0.0003]

Working capital (t − 1) −0.0002 [0.0002]
Num. of upstream alliances × working capital

(t − 1)
−0.0002* [0.0001]

log of cumulative invested capital (t − 1) 0.052 [0.036]
Num. of upstream alliances (3 year

window) × log of cumulative invested
capital (t − 1)

−0.018* [0.008]

Constant 0.287 [0.176] 0.285 [0.175] 0.129 [0.184] 0.789** [0.253] 0.805** [0.255] 0.676* [0.241] −0.215 [0.276] 0.286 [0.176]

log likelihood −3868.319 −3869.391 −3864.715 −2784.083 −2716.266 −2033.470 −1821.109 −3863.179
Likelihood ratio test 231.996 227.529 233.423 115.856 109.12 105.1 147.4 244.0
Degrees of freedom 25 23 25 25 25 23 23 24

Notes: (1) Number of observations = 4530 and number of firms = 429 in Models 1–3 and Model 8; (2) number of observations = 3168 and number of firms = 368 in Model 4 due to missing observation on working capital; (3)
number of observations = 3211 and number of firms = 374 in Model 5 due to missing observations on invested capital; (4) all models include 17 dummy variables indicating years 1986–2002 (<1986 is the base period); (5)
all models include firm fixed effects; (6) Model 6 is estimated using biotech firms that have academic founders. Number of observations = 2246 and number of firms = 221. (7) Model 7 is estimated using biotech firms that
do not have academic founders. Number of observations = 2285 and number of firms = 208. (8) Standard errors in brackets.
† Significant at 10%.
* Significant at 5%.

** Significant at 1%.
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Fig. 3. Effect of age and upstream alliances on downstream alliances.
Plots the surface relating the multiplier of the downstream alliance
rate to biotechnology firms’ upstream alliance count and age. This
multiplier surface is generated from the parameter estimates in Model
3 of Table 4. The rate multiplier is given by the estimated equa-
492 T.E. Stuart et al. / Resea

their technology, and thus they enter fewer downstream
partnerships.

Of central interest to us in Table 5 is the coeffi-
cient on the upstream alliance count. In Model 1, we
have included the number of deals executed between
the focal biotechnology firm and universities in each
of the 3 previous years, t − 1, t − 2 and t − 3. We
included three lags to allow for the possibility that it
takes time for the focal firm to turn around the intel-
lectual property inputs acquired from universities to
downstream alliance partners, both because biotech-
nology firms typically advance in-licensed technology
before entering downstream alliances, and because com-
mercialization alliances are often complex transactions
that are painstakingly negotiated. In support of Hypoth-
esis 1, all of the coefficients on the three lags of the
upstream alliance count variables are positive and statis-
tically significant. The 0.095 coefficient on the 1-year lag
indicates that an additional upstream alliance increases
the rate of downstream deal creation by a multiple of 1.1
(=exp[0.095]).15 As one would expect, the coefficient
magnitudes on the second-year lag falls substantially: in
Model 1 of Table 5, the parameter estimate on the 1-
year lag is nearly twice the magnitude of the coefficient
on the 2-year lag. Our results suggest that the influence
of university alliances on the downstream alliance rate
takes place within the first 3 years after an upstream deal
is established; in an unreported regression, we find that
the fourth-year lag is statistically indistinguishable from
zero.

Models 3–5 in Table 5 examine Hypothesis 2. Model
3 includes an interaction effect between the university
alliance count and firm age, which is included as a sec-
ond order polynomial. For ease of presentation, we have
created a single measure of a firm’s upstream alliance
activity in the interval [t − 1 to t − 3], which we use to
compute the interaction effects. To illustrate the interde-
pendent relationship between age and upstream alliances

as determinants of the downstream alliance rate, Fig. 3
plots the surface implied by the Model 3 coefficient esti-
mates. In support of the assertion in Hypothesis 2, the

15 Interpreting the strategic significance of an effect is always a matter
of judgment. We believe that a rate multiplier of 1.1 for a unit increase
in the upstream alliance count is substantial, especially given that, (i)
the model includes firm fixed effects, and (ii) upstream alliances in
the 2 previous years (t − 2, t − 3) independently affect the downstream
alliance formation rate. Because of the fixed effects, the coefficients
can be understood to represent changes to firm-specific trends in the
downstream alliance rate. In our data, there appear to be a set of firms
that are very active in alliances, and another set that is much less so.
This primary distinction is absorbed in the conditional fixed effects.
tion: exp(0.021 × age − 0.002 × age2 + 0.195 × (upstream alliance
count) − 0.025 × (upstream alliance count) × age + 0.001 × (upstream
alliance count) × age2.

effect of the upstream alliance count sharply attenuates
with the age of the firm. This is easily observed in Fig. 3
by tracing how the effect of a given level of upstream
alliance activity declines with an increase in firm age.16

The execution of an upstream contract with a university
is considerably more likely to be followed by the inking
of a downstream alliance contract when the focal biotech-
nology firm is young. We believe these associations exist
in the data because more established biotechnology firms
are more likely to have the internal resources to advance
the technology they have in-licensed, without requiring
the assistance of downstream partners until further down
the value chain.

Models 4 and 5 in Table 5 offer further support for
this conclusion by swapping the firm age interaction
for direct measures of the resources under a biotech-
nology firm’s control. Model 4 contains an interaction
between the upstream alliance count and a firm’s work-

ing capital in the previous year. Working capital is the
difference between total current assets and current lia-
bilities, and thus is one measure of the amount of capital

16 Firm age is included as a polynomial because the fit of the model
was significantly improved when we added the quadratic age term.
In an unreported regression, we have specified firm age as a spline
with cut-points at ages 4, 6, 8, . . . years. We then included interaction
effects between the upstream alliance count and each of the age pieces.
The results of this specification are consistent with the image in Fig. 3:
upstream alliances have their greatest effect on the downstream alliance
rate for firms that are 4 years and younger. The upstream alliance effect
then declines monotonically in firm age.
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vailable to a company for investment. As we had antic-
pated, the interaction effect is negative: biotech firms
hat enter upstream alliances but have significant, discre-
ionary investment funds are less likely to follow those
ransactions with downstream collaborations. This too
s consistent with the argument that biotech firms with
nternal resources are less likely to engage the assistance
f downstream partners.

Model 5 includes an interaction term between the
pstream alliance count and the total invested capital
f the company. Total invested capital is the sum of a
orporation’s total equity and debt, and thus represents
he aggregate capital investment in the firm. In this case
s well, the finding parallels the results of the interac-
ion with firm age and with working capital: the effect
f university alliances on the downstream alliance rate
ttenuates as the capitalization of a firm increases. Over-
ll, we conclude that our analysis uncovers evidence of a
hange in scope as biotechnology companies mature: the
odel of brokering technology to downstream alliance

artners gradually appears to be supplanted by an effort
o undertake more of the commercialization work inside
he firm.

The next table explores determinants of the forma-
ion of upstream partnerships in which biotechnology
rms contract with universities to acquire scientific
nputs. Table 6 reports random effects negative binomial
stimates of biotechnology firms’ upstream alliance for-
ation rate, based on observations from the 341 IPO

rospectuses with non-missing information on the iden-

able 6
andom effects negative binomial regressions of rate of upstream (university

ariables Model 1 Model

ge −0.0616*** [0.0170] −0.052
og of R&D expenses (t − 1) −0.0595 [0.0700] −0.033
og of revenues (t − 1) −0.0594 [0.0565] −0.058
um. of patent applications (t − 1) 0.0010 [0.0023] 0.0010
irst university alliance partner is in
Top 10

0.4034* [0.1749] 0.3858

um. of firm founders −0.0879 [0.0695] −0.096
um. of academic founders 0.2705*** [0.0821] 0.4350
um. of academic founders × age −0.024
restige of affiliated scientists (in
hundred)

oauthorship count for affiliated
scientists (in hundred)

onstant −0.2599 [0.3344] −0.371

og likelihood −1674.518 −1672
ikelihood ratio test 93.72 99.03
egrees of freedom 24 25

otes: number of observations = 3267; number of firms = 341; all models inc
ase period); all models include firm random effects; standard errors in brack
icy 36 (2007) 477–498 493

tities of company founders and scientific advisors. Of
the control variables, three have significant effects. Mir-
roring Fig. 2, there appears to be a negative association
between firm age and the incidence of upstream allianc-
ing: older biotechnology firms are less likely to establish
formal alliances with universities. Thus, not only are
more established biotechnology firms less prone to con-
vert upstream alliances into downstream partnerships
(Models 2–4, Table 5), they are also less likely to enter
into agreements with universities in the first instance.

The baseline model also includes a dummy variable
indicating whether a focal firm’s first upstream alliance
is with 1 of the 10 universities that were most active in
the biotechnology partnership network. This “First Uni-
versity Partner is in the Top 10” covariate is positive
and statistically significant. Firms whose first transac-
tion was with 1 of these 10 prominent institutions, many
of which were founded with the involvement of one or
more faculty from these institutions, were substantially
more likely to enter subsequent partnerships with univer-
sities. Specifically, the coefficient magnitude suggests a
multiple of the upstream alliance rate by a factor of 1.49
(=exp[0.40]).

Hypothesis 3 asserts that biotechnology firms with
thick networks in the academic community will have
greater success at executing university deals to in-license

intellectual property. As we had anticipated, Model 1 in
Table 6 reveals that biotechnology firms with a greater
number of academic founders do in fact contract with
universities at a higher rate. Specifically, each addi-

–biotech firm) alliances

2 Model 3 Model 4

5** [0.0174] −0.0569*** [0.0171] −0.0568*** [0.0172]
8 [0.0708] −0.0830 [0.0709] −0.0771 [0.0707]
3 [0.0563] −0.0663 [0.0565] −0.0686 [0.0568]
[0.0023] 0.0007 [0.0024] 0.0010 [0.0024]

* [0.1739] 0.3820* [0.1733] 0.3940* [0.1742]

4 [0.0694] −0.0871 [0.0689] −0.0919 [0.0695]
*** [0.1164] 0.2344** [0.0830] 0.2066* [0.0879]
0* [0.0122]

0.0041* [0.0019]

0.0304+ [0.0155]

0 [0.3409] −0.3386 [0.3352] −0.2970 [0.3343]

.550 −1672.236 −1672.596
98.73 96.89
25 25

lude 17 dummy variables indicating years 1986–2002 (<1986 is the
ets; *Significant at 5%; **Significant at 1%; ***Significant at 0.1%.
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of universities, biotechnology firms, and pharmaceuti-
cal partners are at different vertical stages of the value
chain, and that these divided labors are then coordinated

17 We have also investigated the pattern of university alliance forma-
tion across the two sub-samples. Specifically, conditional on having
at least two formal upstream agreements, faculty founded firms have
494 T.E. Stuart et al. / Resea

tional academic founder multiplies the annual, baseline,
upstream alliance formation rate by a factor of 1.35
(=exp[0.298]). The positive effect of academic founders
on upstream alliance formation, however, decreases with
firm age (Model 2, Table 6). Model 3 adds to the base-
line the prestige (academic journal article citations) of
the average affiliated scientist. Once again, the parameter
estimate is positive and statistically significant, showing
that firms with more prominent affiliated scientists par-
ticipate in more university alliances. Model 4 includes
the final proxy for the networks of affiliated scientists –
the sum of the scientific coauthors accrued by each firm’s
affiliated scientists – which is also a positive, statistically
significant predictor of the upstream alliance entry rate.
Collectively, the results in Table 6 confirm the prediction
that the connections of a biotechnology firm in the aca-
demic community are strong determinants of the firm’s
propensity to enter formal, technology access contracts
with universities.

7.1. Extensions and robustness checks

One potential concern with our interpretation of the
findings is the role of faculty-founded firms in generat-
ing the results we observe. If a university–biotech tie is
created when a new firm is founded by a faculty member
and the professor’s work is formally licensed to his/her
new company, should we consider the upstart firm to
be acting as a broker? This is both a conceptual and an
empirical question. Our view is that even if this were
the modal case in the data – that is, if the majority
of the university–biotechnology deals were between a
founder’s firm and his/her university employer – the fact
remains that the startup firm still operates as an interme-
diary in a vertical alliance chain. However, others may
find less interest in the relationships we observe between
the incidences of upstream and downstream partnerships
if the startup firm and the university are coupled at the
birth of the company.

Concern about this issue of interpretation is signifi-
cantly lessened by our use of a conditional fixed effects
estimator. In particular, if the upstream alliance inci-
dence in Table 4 merely served as a proxy for whether or
not a firm originated from a university, it would have an
inconsequential effect in the regressions. This is because
all non-time-varying attributes of the firm, including
whether or not members of its founding team are uni-
versity faculty, will be subsumed in the conditioning on

the firm-specific event count.

Still, the possibility remains that faculty-founded
firms engage in upstream alliance strategies to differ-
ing effect than do firms founded by non-academics. To
icy 36 (2007) 477–498

explore this issue, we include two additional regressions
in Table 5–those reported in Models 6 and 7. These
two regressions are estimated on two mutually exclusive
sub-samples: one with all firms with academic founders
and the second with all non-faculty founded firms. This
is equivalent to a fully interactive regression—by esti-
mating separate regressions, we allow all coefficients to
differ between these two groups of companies. We find
that the upstream/university alliance count significantly
affects the downstream alliance formation rate for both
groups of companies. Perhaps not surprisingly, faculty
founded firms seem to get more mileage out of their uni-
versity deals—the parameter on the upstream alliance
count is larger for these organizations, although not sig-
nificantly so (0.071 versus 0.057). Put differently, we
find that both faculty-founded and non-faculty founded
firms perform the role of intermediary.17

A second issue is that many of the empirical specifi-
cations in prior studies of the rate of alliance formation
include some form of the lagged dependent variable
(i.e., a measure of the extent of the firm’s previous
alliance activity) as an occurrence dependence term (e.g.,
Gulati, 1995; Walker et al., 1997; Stuart, 1998; Ahuja,
2000). The rationale for doing this is that the previ-
ous event count may absorb the effects of at least some
unobserved, firm-specific factors that are not otherwise
accounted for in the regressions. Because we estimate
conditional fixed effects count models, the estimates are
free of firm-specific and time-invariant sources of hetero-
geneity. However, for consistency with previous studies,
Model 8 in Table 4 includes the lagged count of com-
mercialization alliances established by the firm. While
the lagged downstream alliance count is statistically sig-
nificant as we would expect, the estimated effect of the
upstream alliance count remains positive and statistically
significant.

Finally, our assumption that the categories of actors
in our data engage in activities at different stages of the
industry’s value chain merits additional investigation.
We have assumed that the primary foci of the efforts
a statistically indistinguishable number of unique university partners.
In other words, faculty-founded firms with multiple university agree-
ments typically craft deals with multiple universities; they show no
greater tendency to license technology from the same university than
do non-faculty founded firms.
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Table 7
The distribution of stages of research at the time of alliance formation

University with all biotech
firms

University with public
biotech firms only

University with
pharmaceutical firms

Freq. Percent Cum. Freq. Percent Cum. Freq. Percent Cum.

Discovery 858 64.17 64.17 540 60.2 60.20 45 70.31 70.31
Formulation 45 3.37 67.54 29 3.23 63.43 1 1.56 71.87
Lead molecule 299 22.36 89.90 238 26.53 89.96 12 18.75 92.62
Preclinical 67 5.01 94.91 42 4.68 94.64 3 4.69 95.31

Phase I 32 2.39 97.30 24 2.68 97.32 1 1.56 96.87
Phase I/II 1 0.07 97.37 1 0.11 97.43 0 0 96.87
Phase II 22 1.65 99.02 15 1.67 99.11 1 1.56 98.43
Phase III 10 0.75 99.77 6 0.67 99.78 0 0 98.43

Approved 3 0.22 100 2 0.22 100 1 1.56 100

Total 1337 100 897 100 64 100

Notes:

(1) Distribution of stages for upstream alliances formed between universities and all biotech firms are in the left pane, between universities and
public biotech firms in the middle pane, and between universities and pharmaceutical firms in the right pane.

(2) Approximately 35% of the alliance deals in the data have missing information regarding the stage of work at the time the collaboration was
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established. All deals in which the alliance stage was unreported

hrough chains of alliances. However, because we treat
he biotechnology firm as the unit of analysis and model
he rate of alliance formation at the firm level, we can-
ot explore the influence of the actual stage of upstream
lliances in a regression framework.

We have already observed suggestive evidence of
he collaborative role structure in the industry in
able 2a–c. In particular, the distribution of collabora-

ive activity clearly suggests that biotechnology firms
re intermediaries; they actively partner with univer-
ities and pharmaceutical firms, whereas interactions
etween universities and pharmaceutical firms are less
requent. While space constraints limit us from pre-
enting a full fledged analysis, Table 7 is illustrative
f the role of universities in upstream alliances. In
his table, we report the stage of research of all trans-
ctions involving universities, broken out by partner
ype—all biotechnology firms, publicly owned biotech
rms, and pharmaceutical partners. The striking result

n this table is that the stage of the agreement is con-
tant across all three groups of partners: universities
re overwhelming involved in pre-clinical agreements,
nd the modal university deal is at the discovery stage,
egardless of partner type. Complementary analyses

f the activities of biotechnology–biotechnology and
iotechnology–pharmaceutical alliances do evince a pat-
ern of movement down the value chain relative to the
tage at which university partnering is concentrated.
uded from this table.

8. Conclusion

It has long been observed that middlemen are piv-
otal agents in facilitating the optimal deployment of
resources in the economy. Like intermediaries in other
industrial settings, biotechnology firms, we have shown,
occupy the middle wrung in vertical, tripartite alliance
chains in the life sciences industry. In much the same
way as a commodity broker exploits his or her network
to facilitate exchanges, biotechnology firms capitalize on
their thick networks in the academic community to assist
in the development and transfer of university-originated
science to established firms with in-house commercial-
ization capabilities.

Taking the perspective of biotechnology firms, the
empirical analyses we have presented document a cycle
of determinants and consequences of alliance activity in
this technological sector. Starting upstream and work-
ing our way down, we have found that biotech firms
with prominent and well-networked academic founders
and scientific advisors are more likely to enter formal
alliances with universities. Next, we have found that
biotechnology firms with more upstream, university con-
tracts are more frequent participants in downstream,

commercialization alliances. Putting together the results
of the two tables of regression output, we observe that
biotechnology firms with strong academic connections
(but, not necessarily academic founders) are ideally
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suited to capitalize on the business model of brokering
university technology.

We would be remiss if, before concluding, we did not
acknowledge some of the shortcomings of this paper.
The brokerage argument we have developed implicitly
assumes that all parties involved – universities, biotech-
nology companies, and established pharmaceutical firms
– benefit from the tripartite alliance chains we observe.
Based on the existing literature, it is well documented
that biotechnology firms with more research alliances
with established partners enjoy better financial perfor-
mance (e.g., Powell et al., 1996). In unreported analyses
(available from the authors upon request), we have
found that biotechnology firms with many upstream and
downstream alliances grow at fast rates and that private
biotechnology firms with strong alliance history go pub-
lic rapidly. However, with the data available to us, we
were not able to empirically gauge the returns to allianc-
ing experienced by the entities that biotechnology firms
are situated between: established life sciences firms and
universities.

A second shortcoming of the paper is that the many
data requirements necessary to explore our hypotheses
required that we limit the analysis to biotechnology firms
that have filed IPO prospectuses. Although we were able
to assemble and analyze the full life histories of most
of these firms, the fact remains that firms that failed
before going public or that were still private as of the
time we assembled the data are excluded from the anal-
ysis. Because firms that file to go public are, on balance,
more successful than the typical private firm, this data
limitation likely imparts a bias of unknown direction.
Some caution in interpretation of the results is therefore
warranted.

Third, our paper suffers from a common limitation
of studies that use archival alliance databases. Specif-
ically, we are unable to determine the duration of the
alliances in the data, and while we do have some infor-
mation about types and magnitudes of alliances that we
have examined in a series of unreported analyses, the dif-
ference we observe are based on the terms conveyed upon
the announcement of an alliance, rather than the actual
content of the transactions between firms. Of course,
the fact that we found strong support for our arguments
with covariates based on aggregated and undifferentiated
alliance types is encouraging.

Another legitimate concern about this study is the
generalizability of the paper’s argument. Biotechnology

is a distinctive industry, and any claim to the contrary
teeters upon a shaky foundation. Indeed, Gans et al.
(2002) describe conditions that are most likely to induce
startups to pursue cooperative commercialization strate-
icy 36 (2007) 477–498

gies with incumbents (as we have observed in this paper).
These include the existence of incumbent-owned com-
plementary assets that are expensive to replicate and the
ability of startups to secure effective intellectual property
protection for novel inventions. Both of these condi-
tions are met in biotechnology, but certainly not in all
technology-based sectors.

We would, however, offer two comments about the
issue of the broader relevance of the paper’s claims. First,
because of the significant number of influential studies –
particularly work on alliance activity – that are set in the
industry, we believe that a slightly different perspective
on the dynamics of alliance strategies in the industry is
worthwhile in its own right.

Second, although biomedical research has proven to
be the area of university science in which commercializa-
tion has been most vigorous, there are many other fields
of active technology transfer. Moreover, some emerg-
ing science-based companies appear to bear a structural
resemblance to young biotechnology firms. Consider,
for instance, the company Nanosys, a 3-year-old nan-
otechnology firm that recently filed an IPO prospectus.
Nanosys has an intellectual property portfolio of about
200 issued or pending patents, many of which were
licensed from MIT, Harvard, University of California,
and Columbia. The firm also has enlisted 11 prominent
scientists to participate on an advisory board, includ-
ing faculty from Caltech, Cornell, and University of
Chicago, in addition to scientists at the four universities
that formally licensed intellectual property to Nanosys.
And, the company has established commercialization
alliances with Dupont, Intel, and Matsushita Electric
Works, among others. Thus, like biotechnology firms,
emerging companies in nanotechnology are positioning
themselves to broker university science to established
firms. Based on this and many other examples, we expect
that the core of our argument will apply in a number of
settings, although we leave to subsequent work empirical
assessments of generalizability.
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